Signaling and Regulation The Id3/E47 Axis Mediates Cell-Cycle Control in Human Pancreatic Ducts and Adenocarcinoma
نویسندگان
چکیده
Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity, Id3, was profoundly upregulated in ductal cells in murine models of pancreatitis and pancreatic intraepithelial neoplasia (PanIN). Id3 was also pervasively expressed in neoplastic lesions in human PDA in situ. We hypothesized that an imbalance in bHLH versus Id activity controlled cell growth in PDA. Consistent with this model, cell-cycle progression in PDA cells was impeded by siRNA-mediated depletion of Id3 or overexpression of the bHLH protein E47. The precursors of human PDA are normally quiescent duct cells which do not proliferate in response to high serum or growth factors. The finding that Id3 was expressed in pancreatitis, as well as PDA, suggested that Id3 might induce cellcycle entry in ducts. To test this hypothesis, primary human pancreatic duct cells were transduced with an adenovirus-expressing Id3. Remarkably, Id3 expression alone was sufficient to trigger efficient cell-cycle entry, as manifested by expression of the proliferation markers Ki67, phospho-cyclin E, and phospho-histone H3. Collectively, the data establish dysregulation of the Id/bHLH axis as an early and sustained feature of ductal pathogenesis and mark this axis as a potential therapeutic target for intervention in pancreatitis and PDA. Mol Cancer Res; 9(6); 1–9. 2011 AACR.
منابع مشابه
The Id3/E47 axis mediates cell-cycle control in human pancreatic ducts and adenocarcinoma.
Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity,...
متن کاملThe Basic Helix-Loop-Helix Transcription Factor E47 Reprograms Human Pancreatic Cancer Cells to a Quiescent Acinar State With Reduced Tumorigenic Potential
OBJECTIVES Pancreatic ductal adenocarcinoma (PDA) initiates from quiescent acinar cells that attain a Kras mutation, lose signaling from basic helix-loop-helix (bHLH) transcription factors, undergo acinar-ductal metaplasia, and rapidly acquire increased growth potential. We queried whether PDA cells can be reprogrammed to revert to their original quiescent acinar cell state by shifting key tran...
متن کاملIntermittent low dose irradiation enhances the effectiveness of radio-therapy for human breast adenocarcinoma cell line MDA–MB–231
Introduction: Hormesis and adaptive responses are two important biological effects of low-dose ionizing radiation (LDIR) in organism and mammalian cell lines. Notably, LDIR generates distinct biological effects in cancer cells from normal cells, e.g., it may affect the growth of cancer cells via the activation of certain cell signaling pathway, which does not exist in normal ...
متن کاملافزایش اثرات درمانی سیس پلاتین و 5- فلورواوراسیل بر روی ردههای سلولی AGS و KYSE-30 با استفاده از تیمار ترکیبی رتینوئیک اسید تمام ترانس
Backgrounds and Objectives: All-trans retinoic acid (ATRA) which is a derivative of vitamin A, exert fundamental effects on regulation of cell growth, differenation and apoptosis. Recently, resistance to cisplatin and 5-fluorouracil developed in gastric adenocarcinoma and squamous cell carcinoma. In this study, we investigated the combination treatment of ATRA with cisplatin and 5-fluorouracil ...
متن کاملId3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.
The transcription factor Foxp3 dominantly controls regulatory T (Treg) cell function, and only its continuous expression guarantees the maintenance of full Treg cell-suppressive capacity. However, transcriptional regulators maintaining Foxp3 transcription are incompletely described. Here, we report that high E47 transcription factor activity in Treg cells resulted in unstable Foxp3 expression. ...
متن کامل